## U.S. DEPARTMENT OF ENERGY



November 2, 2005

2:00 p.m.

OR01- OR06

Location: The Holiday Inn, Downtown Portland

1441 N.E. Second Avenue

Portland, OR 97232

| 14:21:48 | 1  | wildlife management.                           |                  |
|----------|----|------------------------------------------------|------------------|
|          | 2  | Thank you for the opportunity today, and       |                  |
|          | 3  | that's all I have.                             |                  |
|          | 4  | MS. SOUDER: Thank you. Is there anyone         |                  |
| 14:21:57 | 5  | else that would like to come up and give oral  |                  |
|          | 6  | comments?                                      |                  |
|          | 7  | MR. KUEHNE: Yes.                               | O <sub>R05</sub> |
|          | 8  | MS. SOUDER: Just please state your name.       |                  |
|          | 9  | MR. KUEHNE: Hi, my name is Brian Kuehne.       |                  |
| 14:22:15 | 10 | I am also with Portland General Electric. I    |                  |
|          | 11 | manage the Integrated Resource Planning for    |                  |
|          | 12 | that company.                                  |                  |
|          | 13 | PGE has contracts with Bonneville Power        |                  |
|          | 14 | Administration for the majority of its         |                  |
| 14:22:28 | 15 | transmission requirements. We also own         |                  |
|          | 16 | transmission lines for the delivery of         |                  |
|          | 17 | electricity to our service territory. We thank |                  |
|          | 18 | you for this effort you're undertaking to      |                  |
|          | 19 | assess the energy corridors in the western     |                  |
| 14:22:44 | 20 | states.                                        |                  |
|          | 21 | In the west, electric transmission can         |                  |
|          | 22 | cross multiple states, as well as a number of  |                  |
|          | 23 | public lands that are under different federal  |                  |
|          | 24 | jurisdictions. However, unlike gas pipelines,  |                  |
| 14:22:56 | 25 | the siting authority for interstate electric   |                  |
|          |    |                                                |                  |

| 14:22:59 | 1  | transmission still resides with individual      |
|----------|----|-------------------------------------------------|
|          | 2  | states. Hence, the permitting process can add   |
|          | 3  | substantial time. Large transmission projects   |
|          | 4  | can take as long as ten years to implement,     |
| 14:23:10 | 5  | exceeding the time required to site and         |
|          | 6  | construct most power plants.                    |
|          | 7  | The bulk power grid in the Pacific              |
|          | 8  | Northwest has become congested over time.       |
|          | 9  | Little new transmission capacity has been added |
| 14:23:23 | 10 | and the demands continue to increase. Several   |
|          | 11 | electrical flowgates or points of managed       |
|          | 12 | congestion have reached their respective limits |
|          | 13 | and have little or no available transfer        |
|          | 14 | capacity. These flowgates exist throughout the  |
| 14:23:39 | 15 | Pacific Northwest grid and a given flowgate     |
|          | 16 | typically involves the electric facilities in   |
|          | 17 | more than one corridor. For PGE, the            |
|          | 18 | constraints hamper our ability to move out of   |
|          | 19 | new resources mostly located east of the        |
| 14:23:51 | 20 | Cascade Mountain Range to our customers.        |
|          | 21 | Renewable resources, primarily wind, have great |
|          | 22 | potential in Eastern Oregon and Washington.     |
|          | 23 | Coal for both conventional and the newer        |
|          | 24 | clean-coal or gasification technologies lie     |
| 14:24:07 | 25 | primarily east of the Rockies, and this must be |
|          |    |                                                 |

| 14:24:10 | 1  | moved either by wire or by rail. For these      |
|----------|----|-------------------------------------------------|
|          | 2  | resources to reach PGE and other load centers   |
|          | 3  | in the Pacific Northwest, both the existing and |
|          | 4  | new transmission corridors will have to be      |
| 14:24:23 | 5  | utilized. This need was reinforced recently in  |
|          | 6  | PGEs most recent request for proposals when we  |
|          | 7  | received 111 proposals from 43 different        |
|          | 8  | counterparties, but the output of comparatively |
|          | 9  | few of these could be brought to Portland.      |
| 14:24:39 | 10 | Corridor utilization will have to be            |
|          | 11 | increased to meet the increasing demand for     |
|          | 12 | power. Increasing environmental regulations     |
|          | 13 | over the past few decades have made existing    |
|          | 14 | corridors nearly the only viable option to      |
| 14:24:53 | 15 | expand capacity. However, utilization of        |
|          | 16 | existing corridors does have practical limits.  |
|          | 17 | The highest operating voltage in the western    |
|          | 18 | states is 500 kV. There are still               |
|          | 19 | opportunities to convert lines of lower voltage |
| 14:25:07 | 20 | to higher voltage. Adding new circuits in       |
|          | 21 | existing corridors is another practical         |
|          | 22 | expansion opportunity, and in some cases the    |
|          | 23 | only viable option.                             |
|          | 24 | Typical rights-of-way for high voltage          |
| 14:25:20 | 25 | transmission are 150 to 200 feet. Well          |
|          |    |                                                 |

| 14:25:24 | 1  | utilized corridors can then be in the order of |
|----------|----|------------------------------------------------|
|          | 2  | 800 feet or more and contain combinations of   |
|          | 3  | different voltages and multiple-circuit        |
|          | 4  | structures.                                    |
| 14:25:33 | 5  | However, from an electric system               |
|          | 6  | reliability perspective, placing too much      |
|          | 7  | dependance on any given corridor can have      |
|          | 8  | unacceptable system reliability consequences.  |
|          | 9  | Loss of corridors is a very low probability    |
| 14:25:46 | 10 | event, but history shows that it does happen,  |
|          | 11 | typically due to theft, fire, or               |
|          | 12 | weather-related hazards. Therefore, corridor   |
|          | 13 | diversity can be crucial. The health of the    |
|          | 14 | electric system will, in some cases, be        |
| 14:25:59 | 15 | dependent on spreading the power demand among  |
|          | 16 | several highly utilized corridors. As a        |
|          | 17 | practical matter, upgrading the existing       |
|          | 18 | corridors can be difficult because of the      |
|          | 19 | possible need to temporarily take the existing |
| 14:26:12 | 20 | infrastructure out of service. Without spare   |
|          | 21 | capacity in the system or more timely upgrades |
|          | 22 | being constructed, the market impact can be    |
|          | 23 | potentially severe. Thus the corridor          |
|          | 24 | initiative needs to have a long-term           |
| 14:26:26 | 25 | perspective and identify new alternative       |
|          |    |                                                |

| 14:26:30 | 1  | corridors for existing paths that are already   |
|----------|----|-------------------------------------------------|
|          | 2  | pushing reliability limits.                     |
|          | 3  | We at PGE have just begun a new round of        |
|          | 4  | analysis for our next integrated resource plan. |
| 14:26:40 | 5  | We believe that we will require new electric    |
|          | 6  | transmission capacity across the Cascade        |
|          | 7  | Mountains in a five to ten year time frame.     |
|          | 8  | The entire cross-Cascades transmission system   |
|          | 9  | is nearing its capacity to serve peak winter    |
| 14:26:55 | 10 | power needs. In addition, historical, seasonal  |
|          | 11 | peaking diversity between California and the    |
|          | 12 | Pacific Northwest is diminishing due to more    |
|          | 13 | air conditioning load in the Pacific Northwest  |
|          | 14 | which moves us closer to a dual peaking, as is  |
| 14:27:14 | 15 | the case with other utilities in the Pacific    |
|          | 16 | Northwest.                                      |
|          | 17 | Procuring new, firm transmission capacity       |
|          | 18 | to PGE's load center is unlikely without        |
|          | 19 | significant transmission infrastructure         |
| 14:27:25 | 20 | additions. PGE has also has a significant       |
|          | 21 | corridor across the Cascades, which is not      |
|          | 22 | displayed on the initial map, entitled,         |
|          | 23 | Examples of Possible Energy Corridors. We will  |
|          | 24 | submit more detailed information identifying    |
| 14:27:39 | 25 | this and other proposed or existing or          |
|          |    |                                                 |

| 14:27:43 | 1  | potential corridors which should be considered  |
|----------|----|-------------------------------------------------|
|          | 2  | in this process. And with that, we wish to      |
|          | 3  | thank the agencies once again for this          |
|          | 4  | opportunity to participate in the scoping       |
| 14:27:53 | 5  | process. Thank you.                             |
| ODOC     | 6  | MS. SOUDER: I saw a hand go up. Thanks.         |
| OR06     | 7  | MR. THORTON: Thank you for the                  |
|          | 8  | opportunity. My name is Jim Thorton. I am       |
|          | 9  | with senior consultant with the consulting      |
| 14:28:11 | 10 | firm of College (sic) Environment. But I am     |
|          | 11 | here today to speak privately and as a former   |
|          | 12 | Washington State director of the Rails to       |
|          | 13 | Trails Conservancy. And I would urge you to     |
|          | 14 | look at abandoned railroad right-of-ways.       |
| 14:28:29 | 15 | There are ways that you can use those, if they  |
|          | 16 | haven't been divided up. But I think that       |
|          | 17 | there are corridors all over the western United |
|          | 18 | States, and especially on federal lands, that   |
|          | 19 | you should look at as potential right-of-ways   |
| 14:28:43 | 20 | for pipelines and transmission lines. And       |
|          | 21 | that's all I have to say today, but I really    |
|          | 22 | appreciate the opportunity.                     |
|          | 23 | MS. SOUDER: Thank you very much. I              |
|          | 24 | noticed there were a couple more people that    |
| 14:28:54 | 25 | came into the room. If you would like to come   |
|          |    |                                                 |